Introduction to Conic Sections: Parabola, Hyperbola, Ellipse (Each covered in detail in subsequent tutorials)- MCQ Quiz/Worksheet at the end



 

Plane Trigonometry (Part - I)

S L Loney (Paperback)


Buy New INR 45.00

Privacy

 

Trigonometry: Solving trigonometric equations and ine…


Buy New

Privacy

 

Course In Mathematics For Iit-Jee 2011

Tmh (Paperback)


Buy New INR 488.75

Privacy

 
Plane Trigonometry Part-1 6 E...
List Price: Rs.95
Our Price: Rs.80
Buy from FlipKart
 
Trigonometry
Our Price: Rs.2181
Buy from FlipKart
 
Course In Mathematics for IIT...
List Price: Rs.625
Our Price: Rs.594
Buy from FlipKart

Target Audience: High School Students, College Freshmen and Sophomores, Class 11/12 Students in India preparing for ISC/CBSE and Entrance Examinations like the IIT-JEE 

Main or Advanced/AIEEE

, and anyone else who needs this Tutorial as a reference!

The equations below assume a horizontal major axis (a>b)                                                
(Images, clockwise from top: Ellipse, Parabola, Hyperbola. )

1. Equation of an Ellipse 

(x/a)^2 + (y/b)^2 = 1 

\frac{x^2}{a^2}+\frac{y^2}{b^2}=1

Eccentricity: 
e = Square root of (1 - (b/a)^2) 

Linear Eccentricity: 
c = Square root of ( b^2 - a^2 )

Semi Latus Rectum: 
l = b^2 / a

Focal Parameter:
p =  b^2 / Square root of ( b^2 - a^2)


2. Equation of a Parabola

y^2 = 4ax

Eccentricity = 1
Linear Eccentricity (c) = Semi Latus Rectum (l) = Focal Parameter (p) = 2a

3. Equation of a Hyperbola

(x/a)^2  - (y/b)^2 = 1                                                                                                                                     Above: An Ellipse, Below: Parabola :

\frac{x^2}{a^2}-\frac{y^2}{b^2}=1

Eccentricity: 
e = Square root of (1 + (b/a)^2) 

Linear Eccentricity: 
c = Square root of ( b^2 + a^2 )

Semi Latus Rectum: 
l = b^2 / a

Focal Parameter:
p =  b^2 / Square root of ( b^2 + a^2)

A Hyperbola:


MCQ- The Basics of Conic Sections


MCQ: The Basics of Conic Sections



 


Comments