The Learning Point‎ > ‎Mathematics‎ > ‎Factorial‎ > ‎

472! Factorial of 472

Value of 472! i.e, Factorial of 472 =
70756363880501374116
65978191267230740476
30198451659194495419
95904469888972982763
43851146037892134842
85917535175692661163
27540088174619152064
63396234547269005838
81451338771389332363
74778912959173604970
66294311245456724291
65176169630685167459
29600979915656098910
10710428643004721854
84457721460641403758
76420714643340454917
76821250431852440424
73267531946060158877
26531699638900336613
76144970220892041103
11440730375107301872
91994637768586829796
47399532684233504914
70858630038034284218
09988554878219940532
50447031634060855610
77308160546627691513
25351308827045802969
02567766124925883388
90355278579580615700
21579126892480604613
44030839748978403346
05922089693188079274
74229485194388905163
97914517257366402700
48438949339018817003
54180470676856846517
10828563972944290556
86331283198628990761
82849327483617768533
70106516510437250886
40857208830301042042
01888168363434874843
65863961452774124924
17894226891579368216
69277568064874474723
42546992073460184147
55840000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
0000000000000000000



In general, the factorial of a number N = N*(N-1)*(N-2)....1
Factorial of a non-negative integer n is the product of all positive integers less than or equal to n. Factorials are commonly encountered in permutations, combinations, number theory and series expansions of trigonometric and other functions (Taylor series).

Number of trailing zeros in 472! = 115
To understand factorials, you might find it useful to read the Factorial tutorial over here.
Comments