The Learning Point‎ > ‎Mathematics‎ > ‎Factorial‎ > ‎

481! Factorial of 481

Value of 481! i.e, Factorial of 481 =
90442728191225341532
30674508382212040082
33912542938399624459
29505134162421593610
21055077006096519330
54780182827552236625
91701287370799746518
04461448188843809516
21853402261546044811
22401468052517990524
69254361444035625594
80287297291351450636
09228502949305244072
67544706740384935541
62040677688578971360
16477283443014203002
15053083899548945735
76646204547598922371
88463225176053803935
82830006569837289748
62114751611802663101
06781687967403560592
65076410885981349194
58330443045570331214
48712163427811631519
44950435762584982605
11890750345205983940
53961010723330235391
53572482295948412298
64452183305561907706
17000182338086881491
59772472579785342620
06361701414082801022
43132796060672775825
32244587523002216880
53926298790507044161
42484462877762328437
15983745241762031948
88236933532400147629
23870605967536949780
42807236445251238112
51208906171556365379
75040786111634545160
70429220796032690201
26546216210506860417
29218255179570611079
04022678660384881189
04224604099081548867
82976000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
000



In general, the factorial of a number N = N*(N-1)*(N-2)....1
Factorial of a non-negative integer n is the product of all positive integers less than or equal to n. Factorials are commonly encountered in permutations, combinations, number theory and series expansions of trigonometric and other functions (Taylor series).

Number of trailing zeros in 481! = 118
To understand factorials, you might find it useful to read the Factorial tutorial over here.
Comments