The Learning Point‎ > ‎Mathematics‎ > ‎Factorial‎ > ‎

485! Factorial of 485

Value of 485! i.e, Factorial of 485 =
49425938395896911464
97197709491352836011
88238621124569673620
16914907452083372100
78664352259611618359
95255661818242433172
24327841897209172946
46926439406613798880
85960906713984554124
43463548332825353051
32975683745036486542
30986090465258012718
32369233383167696643
92659177710101584619
91120253814197277593
59828849328532747330
86413422702797393054
41949216085015177977
73964485399829622822
96282202658794525577
26034745463937010286
83854760989120238000
58067150459723092242
04673299440096025021
51706706111402184217
47731498257154069397
26622908139570505435
39109221834408319525
49092413838653014801
16450047715626166812
52799079960523096449
66772923116158675497
08292951399731899253
35159399829626095120
40968669083816639001
59539945751741360633
55506394163644518214
98360010107004721789
05932793430043625340
28615495675502772898
32897978664633455173
72644423188325619403
58935236243383287514
61109451067647521131
40515778398223792867
44368992819737650553
96208743611599127364
83574742003170414778
88045916513894400000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000



In general, the factorial of a number N = N*(N-1)*(N-2)....1
Factorial of a non-negative integer n is the product of all positive integers less than or equal to n. Factorials are commonly encountered in permutations, combinations, number theory and series expansions of trigonometric and other functions (Taylor series).

Number of trailing zeros in 485! = 119
To understand factorials, you might find it useful to read the Factorial tutorial over here.
Comments