The Learning Point‎ > ‎Mathematics‎ > ‎Factorial‎ > ‎

487! Factorial of 487

Value of 487! i.e, Factorial of 487 =
11698229951417672799
35249748277832371932
96434693325005399491
76887454125573996675
55838436221509397056
67029100550465255568
07288362275915261471
31623843531636167146
71961399322879292239
27943839546509770210
89482950780142725707
80698249863498196966
19828814895594896777
07783359498782263251
00982323913251840055
40803011716775787703
76358501712143492582
90611424361433562354
12737462333402474788
98448664289688805902
67713355625895539468
70952112540426956170
45343449305108180918
03210485858080807394
14270246615858891764
96096586470499739453
08376563144289826367
45923448842211429881
93224290692160072849
16921630193429832413
52274991843216527513
90025748988978667634
00058192323191345379
08176197070475563445
28880546536095889752
17560233440413648717
47107964383439711860
15874843912146091562
47813985414609585332
78960772747469347295
12229959386302775437
42792227369059284251
68033509584556443255
53318307097592950596
42323555462848403743
45230741958561146608
41285477855480504662
96405437086794380110
69498483612341554380
80000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000



In general, the factorial of a number N = N*(N-1)*(N-2)....1
Factorial of a non-negative integer n is the product of all positive integers less than or equal to n. Factorials are commonly encountered in permutations, combinations, number theory and series expansions of trigonometric and other functions (Taylor series).

Number of trailing zeros in 487! = 119
To understand factorials, you might find it useful to read the Factorial tutorial over here.
Comments