The Learning Point‎ > ‎Mathematics‎ > ‎Factorial‎ > ‎

488! Factorial of 488

Value of 488! i.e, Factorial of 488 =
57087362162918243260
84018771595821975032
86601303426026349519
83210776132801103776
72491568760965857636
55102010686270447172
19567207906466475980
02324356434384495675
99171628695650946127
68365936986967678629
16676799807096501454
09807459333871201195
04764616690503096272
13982794354057444664
92793740696668979470
39118697177865843994
36629488355260243804
58183750883795784288
14158816187004076970
24429481733681372805
06441175454370232607
30246309197283546111
81276032608927922879
99667170987434340083
41638803485391391813
00951341976038728531
04877628144134352673
20106430349991777823
82934538577741155503
94577555343937582177
99101960194896654267
83325655066215898053
92283978537173765449
91899841703920749613
00937067096147941990
61693939189218605741
25886866191185793877
57469238291272926824
89332248823294776424
01328571007650414800
19682201805157544134
64826069561009307148
20003526772635443087
00193338636253598910
54538950658700210268
04726020757778395449
05473131934744862755
26458532983556574940
19152600028226785378
30400000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00



In general, the factorial of a number N = N*(N-1)*(N-2)....1
Factorial of a non-negative integer n is the product of all positive integers less than or equal to n. Factorials are commonly encountered in permutations, combinations, number theory and series expansions of trigonometric and other functions (Taylor series).

Number of trailing zeros in 488! = 119
To understand factorials, you might find it useful to read the Factorial tutorial over here.
Comments