The Learning Point‎ > ‎Mathematics‎ > ‎Factorial‎ > ‎

491! Factorial of 491

Value of 491! i.e, Factorial of 491 =
67162430982977085714
55389432902787775878
73887463121298952417
47462928279676119856
87059010522901793118
12349054552437955668
42534248550560002640
00524370712142486833
81868193503165772920
12252276212706368088
80312796488731908222
87471869775155393525
07574950543588204268
03805269213912708192
36221093302894673979
12112264361171215258
29642987270587183458
45784355976897571657
81268516277649110194
74555621260398303252
70348496948552308546
02549902100597052475
71064651351517828242
26517231625868788336
47213761882391040136
26767869659814121139
72377266834914718318
16622145720953111732
24564978912087661107
17519614656567940762
43198249550089009785
95723561633142517443
55921755717704731162
72449784457021373500
53629075476318321147
62516900216421770297
36551422359623837828
63784972558032058442
87730299690098837370
68291283994792699021
25103817158960953827
00607244930090990821
18083331195456686523
75577830024806678939
63288362819595982747
22460773003816991347
72070048171561503333
11373119823012855424
16872148559468392418
47251927040000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
0000000000



In general, the factorial of a number N = N*(N-1)*(N-2)....1
Factorial of a non-negative integer n is the product of all positive integers less than or equal to n. Factorials are commonly encountered in permutations, combinations, number theory and series expansions of trigonometric and other functions (Taylor series).

Number of trailing zeros in 491! = 120
To understand factorials, you might find it useful to read the Factorial tutorial over here.
Comments