The Learning Point‎ > ‎Mathematics‎ > ‎Factorial‎ > ‎

492! Factorial of 492

Value of 492! i.e, Factorial of 492 =
33043916043624726171
56051600988171585732
33952631855679084589
39751760713600650969
58033033177267682214
11675734839799474188
86526850286875521298
88257990390374103522
23879151203557560276
70028119896651533099
69113895872456098845
65436159929376453614
33726875667445396499
87472192453245052430
64220777905024179597
72759234065696237907
08184349737128894261
56125903140633605255
64384110008603362215
81481365660115965200
33011460498687735804
64454551833493749818
04963808464946771495
19446477959927443861
54429170846136391747
04369791872628547600
74409615282778041412
53778095694708930972
26485969624747129264
73019650411031426855
11653538778643792814
69095992323506118582
23113503813110727732
06045293952854515762
26385505134348614004
63158314906479510986
30383299800934928211
68982206498551772753
89563307447528627986
37599311725438007918
45551078042208789282
88698764505604767484
02096998948164689769
68784292372204886038
29937874507241223511
63450700317877959743
07858463700408259639
89195574952922324868
69101097091258449069
88847948103680000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
0000000000000



In general, the factorial of a number N = N*(N-1)*(N-2)....1
Factorial of a non-negative integer n is the product of all positive integers less than or equal to n. Factorials are commonly encountered in permutations, combinations, number theory and series expansions of trigonometric and other functions (Taylor series).

Number of trailing zeros in 492! = 120
To understand factorials, you might find it useful to read the Factorial tutorial over here.
Comments