The Learning Point‎ > ‎Mathematics‎ > ‎Factorial‎ > ‎

496! Factorial of 496

Value of 496! i.e, Factorial of 496 =
19758421855972011556
04039420988101025292
97092290192830157403
94324253225093838853
80200975427865910615
86784733070603029786
53943584438084628048
70502692227325993251
61611343270381765034
81846504260436779401
60985733519424335358
18782404847684395693
43411463442732182679
33533628655409236743
81261820471537463005
08241139100718797796
79429544305114755852
17491835138010580438
72061431974884955556
08370245251939206876
66950983247276362280
14745832423855890525
61381486189240747573
97460311809029437933
24536547702670176036
62142916702828736511
50888390692666939230
90687664855022706216
60356083534432525980
55579050854830466371
86211230501944131170
97120353794050498373
88177039163366295077
47486536052167235161
82891724963197782428
98412642918047450940
27075715730212891332
29180156686504590346
43981526345362149225
80075769061976157586
25468317432333740938
24508461165225955673
02340179166745852355
28345021779124369687
32059831886577089257
04634975993576199972
95776340841011758612
10542493029521251631
75281605520924755927
33558082730093510131
71200000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
00000000000000000000
0000



In general, the factorial of a number N = N*(N-1)*(N-2)....1
Factorial of a non-negative integer n is the product of all positive integers less than or equal to n. Factorials are commonly encountered in permutations, combinations, number theory and series expansions of trigonometric and other functions (Taylor series).

Number of trailing zeros in 496! = 121
To understand factorials, you might find it useful to read the Factorial tutorial over here.
Comments