![]() Target Audience: High School Students, College Freshmen and Sophomores, Class 11/12 Students in India preparing for ISC/CBSE and Entrance Examinations like the IIT-JEE Main or Advanced/AIEEE, and anyone else who needs this Tutorial as a reference!Here's a quick look at what we'll cover in this tutorial :
LC CircuitsC and L elements. U = Uc + UL When the capacitor is fully discharged, there is zero energy stored in it. At this moment, the current reaches its maximum value, and all of the energy is transformed into magnetic field and is stored in the inductor. Now, the current continues in the same direction, decreasing in magnitude, with the inductor getting discharged and eventually capacitor becoming fully charged. But the polarity of capacitor plates is now opposite to the initial polarity. This is followed by another discharge until the circuit returns to its original state of maximum charge Q and the plate polarity The oscillations of the LC circuit are analogous to the mechanical oscillations of the spring mass system. Many of those concepts are applicable to LC oscillations. We will show how that the angular frequency of the oscillations depends only on the inductance and capacitance of the circuit. As the Q is varying sinusoidally , the current in the circuit also varies sinusoidally. During oscillation of energy, the same energy is being oscillated between both the elements satisfying energy conservation. Similarly, we will also cover RLC Circuits. RLC series circuitWe now consider a practical circuit consisting of an inductor, capacitor and a resistor connected in series. Let us assume that the initial charge on capacitor is Qmax before the switch is closed. Once the switch is closed and a current is set up, the total energy stored in the capacitor and inductor can be found out by previously derived equations. But in this case, the total energy of the circuit is not constant, like it was in LC circuit. This is because of the resistor element in the circuit, which causes energy dissipation across it in for of heat and radiations. As the energy loss across the resistance is given by -I2We explain how to compute the current (as a function of time), the damping factor and the angular frequency of the damped oscillations. We also illustrate the analogies between electrical and mechanical systems.. A quick look at the nature of questions/problems solved in this tutorial:
Complete tutorial with solved problems :Related Tutorials ( Introduction to Electrical Circuits - DC ) :
|