Introduction to Matrices - Part I Introduction to Matrices. Theory, definitions. What a Matrix is, order of a matrix, equality of matrices, different kind of matrices: row matrix, column matrix, square matrix, diagonal, identity and triangular matrices. Definitions of Trace, Minor, Cofactors, Adjoint, Inverse, Transpose of a matrix. Addition, subtraction, scalar multiplication, multiplication of matrices. Defining special types of matrices like Symmetric, Skew Symmetric, Idempotent, Involuntary, Nil-potent, Singular, Non-Singular, Unitary matrices.
| Introduction to Matrices - Part IIProblems and solved examples based on the sub-topics mentioned above. Some of the problems in this part demonstrate finding the rank, inverse or characteristic equations of matrices. Representing real life problems in matrix form.
| Determinants Introduction to determinants. Second and third order determinants, minors and co-factors. Properties of determinants and how it remains altered or unaltered based on simple transformations is matrices. Expanding the determinant. Solved problems related to determinants. | Simultaneous linear equations in multiple variablesRepresenting a system of linear equations in multiple variables in matrix form. Using determinants to solve these systems of equations. Meaning of consistent, homogeneous and non-homogeneous systems of equations. Theorems relating to consistency of systems of equations. Application of Cramer rule. Solved problems demonstrating how to solve linear equations using matrix and determinant related methods.
|
Definitions of Rank, Eigen Values, Eigen Vectors, Cayley Hamilton Theorem
| More Problems related to Simultaneous Equations; problems related to eigenvalues and eigenvectors Demonstrating the Crammer rule, using eigenvalue methods to solve vector space problems, verifying Cayley Hamilton Theorem, advanced problems related to systems of equations. Solving a system of differential equations .
| A few closing problems in Linear AlgebraSolving a recurrence relation, some more of system of equations.
|
|